Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 83(18): 3314-3332.e9, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37625404

RESUMO

Hsp104 is an AAA+ protein disaggregase that solubilizes and reactivates proteins trapped in aggregated states. We have engineered potentiated Hsp104 variants to mitigate toxic misfolding of α-synuclein, TDP-43, and FUS implicated in fatal neurodegenerative disorders. Though potent disaggregases, these enhanced Hsp104 variants lack substrate specificity and can have unfavorable off-target effects. Here, to lessen off-target effects, we engineer substrate-specific Hsp104 variants. By altering Hsp104 pore loops that engage substrate, we disambiguate Hsp104 variants that selectively suppress α-synuclein toxicity but not TDP-43 or FUS toxicity. Remarkably, α-synuclein-specific Hsp104 variants emerge that mitigate α-synuclein toxicity via distinct ATPase-dependent mechanisms involving α-synuclein disaggregation or detoxification of soluble α-synuclein conformers. Importantly, both types of α-synuclein-specific Hsp104 variant reduce dopaminergic neurodegeneration in a C. elegans model of Parkinson's disease more effectively than non-specific variants. We suggest that increasing the substrate specificity of enhanced disaggregases could be applied broadly to tailor therapeutics for neurodegenerative disease.


Assuntos
Doenças Neurodegenerativas , Proteínas de Saccharomyces cerevisiae , Animais , Humanos , alfa-Sinucleína/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo
2.
Elife ; 92020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319748

RESUMO

The AAA+ protein disaggregase, Hsp104, increases fitness under stress by reversing stress-induced protein aggregation. Natural Hsp104 variants might exist with enhanced, selective activity against neurodegenerative disease substrates. However, natural Hsp104 variation remains largely unexplored. Here, we screened a cross-kingdom collection of Hsp104 homologs in yeast proteotoxicity models. Prokaryotic ClpG reduced TDP-43, FUS, and α-synuclein toxicity, whereas prokaryotic ClpB and hyperactive variants were ineffective. We uncovered therapeutic genetic variation among eukaryotic Hsp104 homologs that specifically antagonized TDP-43 condensation and toxicity in yeast and TDP-43 aggregation in human cells. We also uncovered distinct eukaryotic Hsp104 homologs that selectively antagonized α-synuclein condensation and toxicity in yeast and dopaminergic neurodegeneration in C. elegans. Surprisingly, this therapeutic variation did not manifest as enhanced disaggregase activity, but rather as increased passive inhibition of aggregation of specific substrates. By exploring natural tuning of this passive Hsp104 activity, we elucidated enhanced, substrate-specific agents that counter proteotoxicity underlying neurodegeneration.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Agregação Patológica de Proteínas/patologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/metabolismo , Animais , Caenorhabditis elegans , Linhagem Celular , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Escherichia coli , Variação Genética/genética , Células HEK293 , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Dobramento de Proteína , Deficiências na Proteostase/genética , Deficiências na Proteostase/patologia , Proteína FUS de Ligação a RNA/metabolismo , Saccharomyces cerevisiae
3.
Nat Commun ; 10(1): 2393, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160557

RESUMO

Bacterial ClpB and yeast Hsp104 are homologous Hsp100 protein disaggregases that serve critical functions in proteostasis by solubilizing protein aggregates. Two AAA+ nucleotide binding domains (NBDs) power polypeptide translocation through a central channel comprised of a hexameric spiral of protomers that contact substrate via conserved pore-loop interactions. Here we report cryo-EM structures of a hyperactive ClpB variant bound to the model substrate, casein in the presence of slowly hydrolysable ATPγS, which reveal the translocation mechanism. Distinct substrate-gripping interactions are identified for NBD1 and NBD2 pore loops. A trimer of N-terminal domains define a channel entrance that binds the polypeptide substrate adjacent to the topmost NBD1 contact. NBD conformations at the seam interface reveal how ATP hydrolysis-driven substrate disengagement and re-binding are precisely tuned to drive a directional, stepwise translocation cycle.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Caseínas/metabolismo , Endopeptidase Clp/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/metabolismo , Proteínas de Choque Térmico/ultraestrutura , Transporte Proteico , Domínio AAA , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Hidrólise , Modelos Moleculares , Peptídeos/metabolismo , Agregados Proteicos , Subunidades Proteicas/metabolismo
4.
Biophys J ; 116(10): 1856-1872, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31027887

RESUMO

Heat shock protein (Hsp) 104 is a hexameric ATPases associated with diverse cellular activities motor protein that enables cells to survive extreme stress. Hsp104 couples the energy of ATP binding and hydrolysis to solubilize proteins trapped in aggregated structures. The mechanism by which Hsp104 disaggregates proteins is not completely understood but may require Hsp104 to partially or completely translocate polypeptides across its central channel. Here, we apply transient state, single turnover kinetics to investigate the ATP-dependent translocation of soluble polypeptides by Hsp104 and Hsp104A503S, a potentiated variant developed to resolve misfolded conformers implicated in neurodegenerative disease. We establish that Hsp104 and Hsp104A503S can operate as nonprocessive translocases for soluble substrates, indicating a "partial threading" model of translocation. Remarkably, Hsp104A503S exhibits altered coupling of ATP binding to translocation and decelerated dissociation from polypeptide substrate compared to Hsp104. This altered coupling and prolonged substrate interaction likely increases entropic pulling forces, thereby enabling more effective aggregate dissolution by Hsp104A503S.


Assuntos
Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Choque Térmico/genética , Hidrólise , Cinética , Proteínas Mutantes/metabolismo , Peptídeos/metabolismo , Agregados Proteicos , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
5.
Structure ; 27(3): 449-463.e7, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30595457

RESUMO

Hsp104 is an AAA+ protein disaggregase with powerful amyloid-remodeling activity. All nonmetazoan eukaryotes express Hsp104 while eubacteria express an Hsp104 ortholog, ClpB. However, most studies have focused on Hsp104 from Saccharomyces cerevisiae and ClpB orthologs from two eubacterial species. Thus, the natural spectrum of Hsp104/ClpB molecular architectures and protein-remodeling activities remains largely unexplored. Here, we report two structures of Hsp104 from the thermophilic fungus Calcarisporiella thermophila (CtHsp104), a 2.70Å crystal structure and 4.0Å cryo-electron microscopy structure. Both structures reveal left-handed, helical assemblies with all domains clearly resolved. We thus provide the highest resolution and most complete view of Hsp104 hexamers to date. We also establish that CtHsp104 antagonizes several toxic protein-misfolding events in vivo where S. cerevisiae Hsp104 is ineffective, including rescue of TDP-43, polyglutamine, and α-synuclein toxicity. We suggest that natural Hsp104 variation is an invaluable, untapped resource for illuminating therapeutic disaggregases for fatal neurodegenerative diseases.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/farmacologia , Mucorales/enzimologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/farmacologia , Humanos , Modelos Moleculares , Peptídeos/antagonistas & inibidores , Conformação Proteica em alfa-Hélice , Deficiências na Proteostase/prevenção & controle , alfa-Sinucleína/antagonistas & inibidores
6.
Minerva Ginecol ; 70(1): 53-57, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28994558

RESUMO

BACKGROUND: The advent of flexible CO2 laser fiber to gynecology arena might represent a turning point in the use of laser energy on a large-scale basis in gynecological surgery. However, there might be some concerns regarding the degree of surgical skills required to use the flexible system. The purpose of our study is to evaluate whether flexible CO2 laser fiber is technically accessible. METHODS: Fourteen residents in Obstetrics and Gynecology without surgical experience attending laparoscopic box training with both flexible CO2 laser fiber and traditional line-of-sight CO2 laser using Lumenis AcuPulse Duo CO2 laser (Lumenis, Yokne'am Illit, Israel) were prospectively enrolled. Participants were tested at sequential time points on specific surgical tasks and results obtained with the flexible CO2 laser fiber and the traditional line-of-sight CO2 laser were compared. Results were compared by means of paired t-test and a two-tailed P value <0.05 was considered significant. RESULTS: Mean grading at the beginning of training were similar between flexible fiber and line-of-sight CO2 laser. At the end of training, significant improvement in surgical skills was obtained for both techniques, with a statistically significant higher grading for flexible fiber CO2 laser compared to line-of-sight CO2 laser. CONCLUSIONS: Our study found that residents without surgical experience show better skills with the flexible CO2 laser fiber delivery system compared to the standard line-of-sight CO2 laser system after a two-month training period with gynecological laparoscopic box. According to our results, flexible CO2 laser fiber delivery system is technically accessible and holds a potential in gynecological surgery.


Assuntos
Procedimentos Cirúrgicos em Ginecologia/educação , Ginecologia/educação , Laparoscopia/educação , Lasers de Gás/uso terapêutico , Adulto , Competência Clínica , Avaliação Educacional , Procedimentos Cirúrgicos em Ginecologia/métodos , Ginecologia/métodos , Humanos , Internato e Residência , Laparoscopia/métodos , Curva de Aprendizado , Estudos Prospectivos
7.
Chem Biol ; 22(8): 1074-86, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26256479

RESUMO

Naturally occurring proteolytic fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and SEM2) form amyloid fibrils in seminal fluid, which capture HIV virions and promote infection. For example, PAP248-286 fibrils, termed SEVI (semen-derived enhancer of viral infection), can potentiate HIV infection by several orders of magnitude. Here, we design three disruptive technologies to rapidly antagonize seminal amyloid by repurposing Hsp104, an amyloid-remodeling nanomachine from yeast. First, Hsp104 and an enhanced engineered variant, Hsp104(A503V), directly remodel SEVI and PAP85-120 fibrils into non-amyloid forms. Second, we elucidate catalytically inactive Hsp104 scaffolds that do not remodel amyloid structure, but cluster SEVI, PAP85-120, and SEM1(45-107) fibrils into larger assemblies. Third, we modify Hsp104 to interact with the chambered protease ClpP, which enables coupled remodeling and degradation to irreversibly clear SEVI and PAP85-120 fibrils. Each strategy diminished the ability of seminal amyloid to promote HIV infection, and could have therapeutic utility.


Assuntos
Amiloide/antagonistas & inibidores , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1 , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/farmacologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/farmacologia , Amiloide/química , Proteínas Amiloidogênicas/metabolismo , Fármacos Anti-HIV/síntese química , Linhagem Celular , Proteínas de Choque Térmico/síntese química , Humanos , Masculino , Fragmentos de Peptídeos/síntese química , Proteólise , Proteínas de Saccharomyces cerevisiae/síntese química , Sêmen/química , Sêmen/efeitos dos fármacos
8.
Elife ; 42015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26284498

RESUMO

Semen is the main vector for HIV transmission and contains amyloid fibrils that enhance viral infection. Available microbicides that target viral components have proven largely ineffective in preventing sexual virus transmission. In this study, we establish that CLR01, a 'molecular tweezer' specific for lysine and arginine residues, inhibits the formation of infectivity-enhancing seminal amyloids and remodels preformed fibrils. Moreover, CLR01 abrogates semen-mediated enhancement of viral infection by preventing the formation of virion-amyloid complexes and by directly disrupting the membrane integrity of HIV and other enveloped viruses. We establish that CLR01 acts by binding to the target lysine and arginine residues rather than by a non-specific, colloidal mechanism. CLR01 counteracts both host factors that may be important for HIV transmission and the pathogen itself. These combined anti-amyloid and antiviral activities make CLR01 a promising topical microbicide for blocking infection by HIV and other sexually transmitted viruses.


Assuntos
Amiloide/antagonistas & inibidores , Fármacos Anti-HIV/farmacologia , Antimetabólitos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Organofosfatos/farmacologia , Sêmen/efeitos dos fármacos , Transmissão de Doença Infecciosa/prevenção & controle , Infecções por HIV/prevenção & controle , Infecções por HIV/transmissão , Humanos , Masculino , Sêmen/química , Sêmen/virologia
9.
Biol Open ; 4(9): 1206-12, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26319581

RESUMO

Semen harbors amyloid fibrils formed by proteolytic fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and SEM2) that potently enhance HIV infectivity. Amyloid but not soluble forms of these peptides enhance HIV infection. Thus, agents that remodel these amyloid fibrils could prevent HIV transmission. Here, we confirm that the green tea polyphenol, epigallocatechin-3-gallate (EGCG), slowly remodels fibrils formed by PAP248-286 termed SEVI (semen derived enhancer of viral infection) and also exerts a direct anti-viral effect. We elucidate for the first time that EGCG remodels PAP85-120, SEM1(45-107), and SEM2(49-107) fibrils more rapidly than SEVI fibrils. We establish EGCG as the first small molecule that can remodel all four classes of seminal amyloid. The combined anti-amyloid and anti-viral properties of EGCG could have utility in preventing HIV transmission.

10.
PLoS One ; 9(10): e110115, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25299406

RESUMO

Hsp104 is a hexameric AAA+ protein that utilizes energy from ATP hydrolysis to dissolve disordered protein aggregates as well as amyloid fibers. Interestingly, Hsp104 orthologues are found in all kingdoms of life except animals. Thus, Hsp104 could represent an interesting drug target. Specific inhibition of Hsp104 activity might antagonize non-metazoan parasites that depend on a potent heat shock response, while producing little or no side effects to the host. However, no small molecule inhibitors of Hsp104 are known except guanidinium chloride. Here, we screen over 16,000 small molecules and identify 16 novel inhibitors of Hsp104 ATPase activity. Excluding compounds that inhibited Hsp104 activity by non-specific colloidal effects, we defined Suramin as an inhibitor of Hsp104 ATPase activity. Suramin is a polysulphonated naphthylurea and is used as an antiprotozoal drug for African Trypanosomiasis. Suramin also interfered with Hsp104 disaggregase, unfoldase, and translocase activities, and the inhibitory effect of Suramin was not rescued by Hsp70 and Hsp40. Suramin does not disrupt Hsp104 hexamers and does not effectively inhibit ClpB, the E. coli homolog of Hsp104, establishing yet another key difference between Hsp104 and ClpB behavior. Intriguingly, a potentiated Hsp104 variant, Hsp104A503V, is more sensitive to Suramin than wild-type Hsp104. By contrast, Hsp104 variants bearing inactivating sensor-1 mutations in nucleotide-binding domain (NBD) 1 or 2 are more resistant to Suramin. Thus, Suramin depends upon ATPase events at both NBDs to exert its maximal effect. Suramin could develop into an important mechanistic probe to study Hsp104 structure and function.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Proteínas de Choque Térmico/metabolismo , Agregados Proteicos/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Suramina/farmacologia , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/química , Chaperonas Moleculares , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Suramina/química
11.
Cell ; 156(1-2): 170-82, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24439375

RESUMO

There are no therapies that reverse the proteotoxic misfolding events that underpin fatal neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Hsp104, a conserved hexameric AAA+ protein from yeast, solubilizes disordered aggregates and amyloid but has no metazoan homolog and only limited activity against human neurodegenerative disease proteins. Here, we reprogram Hsp104 to rescue TDP-43, FUS, and α-synuclein proteotoxicity by mutating single residues in helix 1, 2, or 3 of the middle domain or the small domain of nucleotide-binding domain 1. Potentiated Hsp104 variants enhance aggregate dissolution, restore proper protein localization, suppress proteotoxicity, and in a C. elegans PD model attenuate dopaminergic neurodegeneration. Potentiating mutations reconfigure how Hsp104 subunits collaborate, desensitize Hsp104 to inhibition, obviate any requirement for Hsp70, and enhance ATPase, translocation, and unfoldase activity. Our work establishes that disease-associated aggregates and amyloid are tractable targets and that enhanced disaggregases can restore proteostasis and mitigate neurodegeneration.


Assuntos
Caenorhabditis elegans , Modelos Animais de Doenças , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico/química , Humanos , Modelos Moleculares , Mutagênese , Neurônios/citologia , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Dobramento de Proteína , Estrutura Terciária de Proteína , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , Deficiências na Proteostase/terapia , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/química , alfa-Sinucleína/metabolismo
12.
Biology (Basel) ; 1(1): 58-80, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24832047

RESUMO

Despite its discovery over 30 years ago, human immunodeficiency virus (HIV) continues to threaten public health worldwide. Semen is the principal vehicle for the transmission of this retrovirus and several endogenous peptides in semen, including fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and SEM2), assemble into amyloid fibrils that promote HIV infection. For example, PAP248-286 fibrils, termed SEVI (Semen derived Enhancer of Viral Infection), potentiate HIV infection by up to 105-fold. Fibrils enhance infectivity by facilitating virion attachment and fusion to target cells, whereas soluble peptides have no effect. Importantly, the stimulatory effect is greatest at low viral titers, which mimics mucosal transmission of HIV, where relatively few virions traverse the mucosal barrier. Devising a method to rapidly reverse fibril formation (rather than simply inhibit it) would provide an innovative and urgently needed preventative strategy for reducing HIV infection via the sexual route. Targeting a host-encoded protein conformer represents a departure from traditional microbicidal approaches that target the viral machinery, and could synergize with direct antiviral approaches. Here, we review the identification of these amyloidogenic peptides, their mechanism of action, and various strategies for inhibiting their HIV-enhancing effects.

13.
Nicotine Tob Res ; 13(1): 41-6, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21097981

RESUMO

INTRODUCTION: Clinical and preclinical studies suggest that regulation of nicotinic acetylcholine receptors (nAChR) maybe involved in the etiology of withdrawal symptoms. METHODS: We evaluated heteromeric nAChR regulation via [³H]epibatidine binding following cessation of chronic nicotine or varenicline treatment. Animals were concurrently tested in the marble-burying test to evaluate treatment-related effects. RESULTS: We found that both nicotine (18 mg/kg/day, free base) and varenicline (1.8 mg/kg/day) chronically administered for 14 days upregulated nAChRs significantly in the cortex, hippocampus, striatum, and thalamus. The duration of upregulation (up to 72 hr) was both drug and region specific. In addition to nAChR upregulation, chronic administration of both nicotine and varenicline had anxiolytic-like effects in the marble-burying test. This effect was maintained for 48 hr following cessation of varenicline but was absent 24 hr following cessation from nicotine. Additionally, marble-burying behavior positively correlated to the regulation of cortical nAChRs following cessation of either treatment. CONCLUSIONS: Varenicline has been shown to be an efficacious smoking cessation aid, with a proposed mechanism of action that includes modulation of dopamine release in reward areas of the brain. Our studies show that varenicline elicits both anxiolytic effects in the marble-burying test as well as region- and time-specific receptor upregulation. These findings suggest receptor upregulation as a mechanism for its efficacy as a smoking cessation therapy.


Assuntos
Benzazepinas/farmacologia , Nicotina/farmacologia , Quinoxalinas/farmacologia , Receptores Nicotínicos/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Abandono do Hábito de Fumar , Síndrome de Abstinência a Substâncias/metabolismo , Tálamo/efeitos dos fármacos , Tálamo/metabolismo , Vareniclina
14.
J Pharmacol Exp Ther ; 334(2): 665-72, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20435920

RESUMO

Clinical and preclinical studies suggest that nicotinic acetylcholine receptors are involved in affective disorders; therefore, the potential therapeutic value of nicotinic partial agonists as treatments of these disorders is of growing interest. This study evaluated the effects of acute and chronic administration of nicotine and the alpha4beta2 nicotinic partial agonists varenicline and sazetidine-A in mouse models of anxiety and depression. Acutely, only nicotine and varenicline had anxiolytic effects in the marble-burying test and in the novelty-induced hypophagia (NIH) test. In contrast, in animal models of antidepressant efficacy, such as the forced swim and the tail suspension test, only acute sazetidine-A had significant antidepressant-like effects. The NIH test provides an anxiety-related measure that is sensitive to the effects of chronic but not acute antidepressant treatment. Chronic nicotine and chronic sazetidine-A treatment were effective in this paradigm, but varenicline was ineffective. These results suggest that the partial agonists varenicline and sazetidine-A may have diverse therapeutic benefits in affective disorders.


Assuntos
Azetidinas/farmacologia , Comportamento Animal/efeitos dos fármacos , Benzazepinas/farmacologia , Transtornos do Humor/tratamento farmacológico , Agonistas Nicotínicos/farmacologia , Piridinas/farmacologia , Quinoxalinas/farmacologia , Animais , Ansiedade/tratamento farmacológico , Ansiedade/psicologia , Azetidinas/uso terapêutico , Benzazepinas/uso terapêutico , Quimera , Depressão/tratamento farmacológico , Depressão/psicologia , Agonismo Parcial de Drogas , Masculino , Camundongos , Transtornos do Humor/psicologia , Nicotina/farmacologia , Agonistas Nicotínicos/uso terapêutico , Piridinas/uso terapêutico , Quinoxalinas/uso terapêutico , Vareniclina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...